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3ES3I0H A.V.3 

TITLE:   Behavior of Non-Newtonian Fluids Under Conditions of High 
Pressure, Rapid Acceleration and High Local Velocity 

AtffHOR;   HOWARD 
Ordnance Weapons Comsand 

ABSTRACT: An investigation of the basic relationships which describe 
the flow of non-Newtonian fluids under conditions of Impact loading, 
poosible plastic flow, and short periods for the various conditions. 

A generalization of the Navier-Stokes equation Is proposed 
for non-Newtonian fluids In which the stress is proportional to a power 
n of the rate of strain. Results ahow that the ratio of the transverse 
to the longitudinal strain la not a cotmiant but a function of time or 
of strain and dep*tid:i rtrongly upon the vlsco-elastic response of the 
medium as well as on the loading conditions. 'Rie pronounced effect or 

volume-viscosity on t!« shape of this function 1« UluBtroied. 
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3EHAVI0R CF NON-MEWTONIAN PLUIDS 
IWDSR CCNDITICNS OF HIGH PRESSURE 
RAPID .'kCCELERATICN AND HIGH VEUCnY 

3. A. iimw, JR. 

CRC'SVC- VäAPCMS CCWt.'.MO 
RC'^K TSI/.'"), TU.rTIH 

Pseudo Plastic and Dilatant Fluids 
The simple shear flow of pseudo-plastic and dilatant fluids 

Is expressed with considerable exactness by Waele-Ostwald's formula 
as follows: J n du      Tn 

3y"^pSu (1) 

where /;p5u is the qvantity siailar to the viscosity of Newtonian 
fluid, T is the shenrinp stress,   du/dy is the velocity gradient, 
n is the rheclofficnl constant,   The flow of pseudo-plastic fluids is 
expressed by   n > 1, and that of dilatant fluids is given by   n < .1 
in the above equation, respectively.  . ., 

1 

The relation between the stress co-^ponents and rate-of- 
!train components for non-Mewtonian fluids can le expressed as: 

Pik " ^ik • P^ik. ' (2): 

.'here p 
in the 

^ is a coiaponont of the stress tensor (Pj^).» as indicated 
fcllcwinf array: ' p- . ■ • _—   ,       .   •• ' 
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'ik 
•»xrrested as: 

zy       .rzz 
is .i conponent of the rate-of-strain tensor Xe"^) which-is 
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These tensors are symmetric tensors, that is: 

Pik-Pki'   eik"eki      (i^k) 

p..  is a normal stress if 1 ■ k/a tangential or a shear stress if 
2   i / k, p is the pressure, which is the mean of the normal stresses 

over three planes mutually at right angles,   6^ is the Kronecker 
delta (ö^» 1 if i«k, 6^« 0 if i-k; i,k» x,y, z).   u, v, w are 
parallel velocity conponents to the coordinate axes of rectangular 
Cartesian coordinates x,y, z, respectively,   e   , e   , etc. are 

AU    e   «Av + 
Au *x   yy 

exx' 7x" *   xy    ^T    W   etc«   (A denoter partial 
derivative) 

^ is an arbitrary scalar function of the three invariants of the 
rate-of-strain, and nay be expressed as 

0 ■ e    + e     + e /f\ xxx  yy ■   zz (5) 
i      2       2       2      • e ■ e   e     ♦ee     ♦ee     -4(e     +e* e«„) ^) yy zz      zz xx     cxxcyy   .4V yz     zy    xy'     y 

je., I ■ e    e   e ,  e   e   e 1  ik1       xx yy zz ♦ ^   yz zx xy 

i{ e   e2   +6   e 2 ♦ e   e 2 )    (7) 4 v   xx yz      yy zx      zz xy '    v ' 

If we treat the fluid as being inconpressible, the first invariant 
0   vanishes, or ^ , rS * e+e+e»0 (5) xx      yy      zz v  ' 

Consequently,  i^can be expressed as an arbitrary scalar function of 
the two invariants e, le^. ].   In rectilinear flow and in two-dimen- 
sional flow, the third invariant je^| is identically zero.   Hence 
\ can be expressed as a scalar function of the second invariant e 
only in threerdimensional flow.   Taking account of eq. (8), the 
second invariant   e   becomes 

e - -  i( 2(e 2 + e 2 + e 2) + e 2 + e2   ♦' e 2 ] (?) 
*    . **  . yy    zz      yz.   zx    xy J        v ' 

If we generalize 'Vaele-Ostwald's formula by assurainc; that the stress 
compoaents are, in general, expressible by the l/n th rower functions 
of the rate-of-strain components for non-Newtonian fluids, the rela- 
tions between the stress components and the rate-of-strain components 
may be expressed as 

.l/n 
PSU       xx (10) 

pii ■-P + ^psu   eiie»   (i"x» y' z) 

-  iul/n   e ik     -^psu   eik 
o o o on ^.Vo« 

(11) 

Pik'^su   eik.0>   (^ "^ y» z5 i/k) 

A . r9/0 2     „ 2 2. 2        2        2 fl-nV2n e ■   «'. evv +e.    +e-„)4e     +e     +e     1 xx   .   yv       2z/     cyz       zx       xy J 

If we include the kinetic reactions and the external forces, and 
consider the equilibrium of an infinitesimal rectangular   parallele- 
piped with its centroid at a point Pfx, y, z,) and its edges parallel 
to th-.- ^Ordinate   axes,then by resolvinp; the resultant forces along 
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the axes, we obtain 
to' PY . Äpvv   , Apvv   A Ap, 
Dt H        Zy"    ST" 

where K, Y, Z are the components of the external force actin~ on the 
fluid per unit mass,   Q is the density, and Du/Dt, Dv/Dt, ^nd Dw/Dt 
are the components of the acceleration of a particle of the fluid. 
Substituting eq. (10) in eq. (12), then nakinp; use of e" ^c) we h.-ve 
the fundamental equations of motion for non-Newtonian fluii in the 
form 

2 A2 *2     • A2 

where     ry* "?&„.&*& 

Ay        Az 

The equation of continuity is     «-* * e«« + e,, " ^ ^^ xx       yy       zz 
This is treating the fluid as being incoopressible.   Parameters 
should be theorized for variation in density for fluid under pressure 
and eqs. (12) and (13) should be solved with the appropriate terms 
inserted.   This will be investigated in another papei. 
If n » 1, eq. (13) becomes the Navier-Stokes equation for Newtonian 
fluid.   The rheological constant n has the different values for 
varied fluids and n, in general, seldom has an integral value.   The 
approximate solution by the energy method may be applied for non- 
Newtonian flow.   The dissipation of energy in non-?lewtcnian flow may 
be calculated by 

1 ■ J JJ [exxPxx + Vyy + e*Az+ Vyz+ Wzx4 V*y] 

[dxdydz] 
Substituting eq. (10) into this equation and then using eq C') we 
get I-A^ l/n f f f W* 2 + e2*e 2)+e 2

+e 
2

+e 2f+^?dz     W "psu  J J ^ l v xx       yy     zz'    yz    zx   xyJ   axayaz ' 

so that the dissipation function 0, which is the rate of dissipation 
of energy per unit time per unit volume is obtained as 

d 1/n ro,    2       2       2x 2 2 2^1+1^       (15) 0 ■   ji   '    [2(e     +e     +e    ) + e     + e     + e    r    ' ^     ^psu   L x xx     yy     zz'       yz       zx       xyJ 

Now if the velocity distribution of flow gets the minimum dissipation 
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of energy, that is     61 ■ Mj J 0 dacdydz «0 (16) 

It rcay be proved that the velocity distribvtion also satisfies the 
equation of notion in which inertia terms are neglected and external 
forces derived from a potential or zero, that is 

0*.2w + e     £? AO     ,       t9       ÄH 
zy Ay        zz Äz      Az      • 

Where B is a function of x, y, z.   Fron eq. (15) ve have • 

«AT - n + 1   .. l/n öroAu A6u ^ Av &6v   -Äw ÄöH A /Aw A AVvÄß»L *8v\ 6(J • -jj- /ips.:   0(2H ^ +2 - j-- +2-^ + (^ ♦ n>(^ ^ 
. /Au . AWx /Aßu . AöHx ^ /Av . Au* /Ä6v . A6u» « 
* t-Ez + w t4^414^ (sr4 zr' * 

Therefore the variation      61 of I becomes 

Coosldering that 6u, 6v, 6w are zero at the body surface arid infinity 
and then using the integration by parts, the differential terns of 
6U| 6v, and 6w with respect to x become 

Since the differential terms of 5u, 6v, and 6w wtih resrect to y 
and z are transformed in the same wa.v, eq. .IF may be written as ' 

51 -iutVl/n f f fwoJu *2e   ^ + ev   ^ + e,    Ä + 6v(ö^v n       psu  J J J1 v XXAJ:       xy Ay     ^z Az v 

' AS    0        AO AOv      c /n    2 AO AS     0        ^   ' + e     7- +2e      r" + e     T-J +  öwlörrw + e      r- 4 e      r- + 2e     —j xy Ax       yy Ay       yz Az v zx Ax        zy Ay zz Az 

<: 
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Utilizing eq. (6'} and eq. (16) the above equation becomes 

JJJIM« *. * 2,^ .^$. .„ £) ♦ M^v V g ♦ *„ 

Since the variations 6u, 6v, and öw must be satisfied by eq. (6) so 

ST    Sy"    Si" ' 
Multiplying this equation by a(xt y, i) and then adding its result! 
to eq, (19) produces the following eiuationi     (20) 

fffiMO^u^e     £*e     ^+e     Ä * 6v(ö^v * •   0^ + J J J  l        V xx Ax       xy Ay      xz Az v yx Ax 
-       Ad       .AO.  . /«   2 AO        Aö^,       AOx      /A6u Aöv^Aöwi,.,».. 
2eyy STV Sz)+6w(C^w+ezx STSy JT26»» ^)+ ^S^STST^^ 
equals zero.   Since 6u, 6v, and 6w are zero at the body surface and 
infinity, using integration by parts gives 

1J f a Jä6^^ " f ft la6ul " Jn6^! W* ""flf E^^2 

Therefore eq. (2ü) becories 

As 6u, 5v, 'and 6w r.ay Lake arbitrary values in the domain of flow, 
the coefficients' cf 6uj -öv, and 6w must be zero in order to always 

■ satisfy the. above equation.    Then,  the same'equation as eq, 17 is 
•obtained as follows: 

*     ' 2  :    .       LQ        , AW       •     AÖ     Aa 
dr7U+-2e     —+e*7- + e     rr * TT v xx Ax       xy Ay  .   xz Az     Ax 

■   ' a   2    ^ AW    0        Aü AW     Aa •       . . 
Wr7v+   e     7—+2e     T-

+ e     7-■ ?— v yx Ax       yy Ay      yz Az    -Ay 

n   2 AW AW ^      ' AO     Aa 
Qr7w+   e     7-+e.     7— +2e     7- • 7— v zx Ax       zy Ay       zz Az     Az 

Thus,  the velocity distribution that satisfies e^. (16) is found to 
be the solution of eq, (17), if the inertia terms are neglected and 
external forces derived frcm a potential or zero.   Therefore, if the 
flow satisfies  the conditions mentioned above, the approximate solu- 
tion öf flow may be obtained by using this minimum dissipation cf 
energy method:     the velocity distribution containing some undetermined 
coefficients and satisfying the boundary conditions is apirotriately 
assumed, and then the undetermined coefficients are determined so 
that the dissipation energy becomes minimum. 
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VISCC-EUSTICITY 
Some of th^ charactarlstlcs of viscc-elaatic subatances are 

desirable In the operation of hydraulic systems of aircraft, weapon 
systems and transportation equipment«   In effect, there is p. need to 
absorb energy without a shock result.   Tn viscoelastic substances, 
the ratio of lateral to longitudinal strain in uni-axial stressin" is 
not a constant but a variable raraajeter depending on tine and the 
conditions of the test,   A theoretical analysis of this rarnaeter un- 
der various assunptlons concerning the visco-elastic response rf the 
material and the testing conditions as developed by Freudenthal and 
others is ciiven.   The Maxwell body mere closelv arTcxinates the 
desired reaction.   Promise of further arnroxima.icn is shown in the 
characteristics of some long chain polymeric fluids which show a hijh 
bulk mod.lus under high pressures.    The final solution to the problem 
will be aci'onplished by development of the desirable characteristics 
fron a molecular structure approach. 

The stress and strain conponents o.. and ^. . may be written 
as   S.., e.. and a., C'vv>, respectively, so that 

where 6.. is the same &rcnecker delta.   The general linear visco-elas- 
tic medium is defined by the linear operator equations 

PSiJ-2a(5elj     and    »^ - 3KV( 6^ - K) d-2) 
where T denotes the temperature difference with respect to a constant 
reference temperature and a the coefficient of thermal expansion* 
The constants of the operators 

'■•otal IT* ••••••••••••-••«& 

»"Viir-—- -"'rW 

.    "-VHre* biTP 
are combinations of relaxation tines, retardation times and shear 
noduli. 

Combining eqs, (1,2) under the assumption cf isothermal condit- 
ions, the visco-elastic stress-strain relations may be obtained in 
the altematlvefoms: 

and •   €     ,i P   i »^  ß+i ffl 
(lj4) 

^ij    (9K T " Hi ^ ^ CTkk 6ij + 20 ^ aij 
Poisson' s ratio ^ for the elastic medium related to K and G by the 
relation ^ . {% _ 2G)/ 2{x + G) (1>5) 

can be transfonned and becomes, in linear visco-elaistic theory, the 
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CPÜRATOR 

2i%f? * ort •) 
Dividing tlv numerator and denominator by 1? KG, eq. 1.6 takes the 
form 1   IP    I   F 

)■--.?.*' (1.6a) 
1     F   ♦ 1   F 

vhich can be obtained by evaluating the second eq. (l.'i) for the con- 
dition.  Thus    •,    mi       t    m 

m ( ♦ } a., 
'/    9K :•  3Q ; 

and 

the ti-ne deper.dent rctic   >)(t) is obtained as the ratio    "V(t) ■ 

Laplace transforms are used to evaluate this ratio by use cf the 
stress-strsin relaicns (1.2) and (l.'i) and the operator equations (1.3) 

(l.P) 

k«m        , k-n        . 
"F" (p) - £.    akpk -Tip) - £ b. rk 

k-l     K k-1   K 

and , , k-r k-s k 

f (P) -^1     ^ P ?' fP) -^   b» pK 

k-l     K k-l     K . 

The ratios 
i P(r) i P' (r) 

"^ ^P) -^777 and        4- (P) -           (1.?)   '   '    •    ' 
R (P) Bf' ^ (P) 

are quotients of two polyncr.ials, the inverse transfcrnf of which 
can, uäually be expr ssed in the fcm of series cf negative exponertisls. 

ihe transfomed ens. (1.7) can be directly written in the fom 

eu - (—J— ^ -i-.) ^ 
11 9K K' (p) 33 K (p) 

anr! «. (l.lfl)) 

9^; i1 (p) 6G i (p). 
22 "    ( 1 )    ^11 
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Poisaon's ratio >)(t) is obtained as the inverse transform 

L-^l  1 J^  ]*,,) 
\ 9K 1» (p)     60 ■  (p)       ^ /, ,,) 

ir\[—I—♦—J—J^, 
% V (p)      3G ■   (p) U 

When  £ JJ ■   6^ (t) and   S^ (p) is given, with <^2 ■ a-. - 0, 

a,, is evaluated with the eic cf the first eq. (l.]ü) and introduced 

into the second.   Hence the ratio 

^ (t) .i-illLEJsl ioj MJ^    A u) (i.i2) 

9 K ■• (p)        3 0 1   (p). 

Eq. (1.11) and (1.12) will now be evaluated for the unwell type of 
idealized linear visco-eltstic behavicr in vckne-constant distorticn. 
If we assume elastic volumetric defcmstion I1 reduces to unity.   Tto 
testinp; conditions investigated are :    constant stress v.. ■ const., 

constant stress-rate a,. ■ ct where c is an   rbitrary constant, 

constant strain    C,, ■ const, and constant str?in-rate    ^-JI ■ ct. 

For the actual evaluation the arbitrary relation    3 K - P G has been 
introduced, for which the frequently use! elastic value   "^ ■ 1/3 
is obtained. 

Evaluation of "Fcisscn's Ratio for Si- rle   Slpstically 
w empress lb le vIscö^rräs£TcTediä--i:axwell L<cdy 

The mechanical behavior cf a Maxwell body is determined 

F» - 1 • Qi- 1 

where   T   ■ "l/ G 

Constant stress Oj,    is specifically 

o11 - c H (t), Zn   - c i 

From eq. (1.11) 

>)   (t)- 

L-1^ Ü-EE L_)£] 
60 T p 9 K     p 

] 
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t . ,     2G 
.    1     T41-7T 

t     ,       0 

i'he diasram of  ^ (t) for G/K ■ 3/B is shown in figure 1, curve 
Oy. -c. At t ■ 0, the value of   ^ ■ 1/3 and as t •♦fll}   ^ ■ l/2. 

These limits may be explained by the fact that the instantaneous 
response of a Maxwell body is purely elastic and consequently >) is 
controlled by the ratio G/K only.   Inder long time loading a Max- 
well body behaves as a viscous fluid which resulte -* 0-*l/2, with 
the elastic compressibility becoming unncticeable under the uni- 
axial testing conditions* 

The constant stress rate is specified by 

öL. ■ ct   H(t) and     f.. «0-2 

Fron eq. (1.11) 

L-^-LLil - JL)   c j t        .     2G 
^             60 Tp     9K    p" .        ?"L—Ijl 

L-l   [(Ll_LE+^)  cj 2(^*1.^) 
3 G T p     9 K    p^ 

The corresponding diagram is shown in figure 1, curve o,, ■ ct 

Constant strain is specified by ^. 

^ - c H(t) and      6^ - c - 

^rom eq. (1.12) 

3 K ( | * p) - 2 Gp 
J (t) - r1 [ 1.    ] 

2( 3 K( i* p) +G p   ]p 

This is shown by curve     £.. ■ c in figure 1 

Constant strain rate is specified by      ^ 

£,,- c t H(t) and       £.- ■ c -^ 

From eq. (1.12 ) 

v T      f 3 K (i + p) - 2 Gp . 
^(t)    -L"1    J    1^ J    /  , (1.13)' 

I   2f 3K   i+p) +Gp]P
2t    /   i 

P 
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^hls is shown by curve  Q. • c t in figure 1 

But  T ■,^- 

^'hen eq. (1.13) becomes 

S (t) " 7 + ( m   5   * l) exp (- TTTTT TTTT/n ) 
dul 

and eq. (l.Uj) becomes 
1/n 

which gives the ratio cf lateral tc longitudinal strain in uni-axial 
stressing in terns cf viscosity and fluid velocity. 

The paper has proposed a generalization of the Navier-Stokes 
equation for non-Mewtonian fluids in which the stress is propor- 
tional to a power n cf the rate cf strain,    i'he ratio of the trans- 
verse to the longitudinal strain is not a constant but a function 
of tine or cf strain and depends strongly upon the visco-elastic 
response of the medium as well as on the loading conditions. 
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